
Random or Genetic Algorithm Search for
Object-Oriented Test Suite Generation?

Sina Shamshiri, José Miguel Rojas, Gordon Fraser, Phil McMinn
Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello, Sheffield, UK, S1 4DP

ABSTRACT
Achieving high structural coverage is an important aim
in software testing. Several search-based techniques have
proved successful at automatically generating tests that
achieve high coverage. However, despite the well-established
arguments behind using evolutionary search algorithms
(e.g., genetic algorithms) in preference to random search,
it remains an open question whether the benefits can actu-
ally be observed in practice when generating unit test suites
for object-oriented classes. In this paper, we report an em-
pirical study on the effects of using a genetic algorithm (GA)
to generate test suites over generating test suites incremen-
tally with random search, by applying the EvoSuite unit
test suite generator to 1,000 classes randomly selected from
the SF110 corpus of open source projects. Surprisingly, the
results show little difference between the coverage achieved
by test suites generated with evolutionary search compared
to those generated using random search. A detailed analysis
reveals that the genetic algorithm covers more branches of
the type where standard fitness functions provide guidance.
In practice, however, we observed that the vast majority of
branches in the analyzed projects provide no such guidance.

Categories and Subject Descriptors. D.2.5 [Software
Engineering]: Testing and Debugging – Testing Tools;

Keywords. Automated Unit Test Generation; Random
Testing; Genetic Algorithms; Search-Based Testing

1. INTRODUCTION
Automatically generating software test cases is an impor-

tant task with the objective of improving software qual-
ity. Many different algorithms and techniques for differ-
ent types of software testing problems have been proposed.
One particular application area where search-based tech-
niques have been successfully applied is the unit testing
of object-oriented programs, where test cases are sequences
of object constructor and method calls. There are various
search-based tools available for languages such as Java and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754696

.NET, ranging from tools based on random search such as
Randoop [21], JCrasher [5], JTExpert [23], NightHawk [2],
T3 [22], or Yeti-Test [20], to tools based on evolutionary
search such as EvoSuite [7], eToc [25] or Testful [4].

Although the tools based on evolutionary search tech-
niques are commonly thought to be superior, it is unclear
whether this is actually the case in practice. It could be that
differences in performance across tools may be accounted for
by the differences in the programming language that they
target, or in the way they have been engineered, as opposed
to any specific benefits of the particular search algorithm
that they apply. In order to shed more light on these ques-
tions, in this paper we report on experiments to contrast the
use of a genetic algorithm (GA) to optimize unit test suites
for code coverage with an algorithm that optimizes code cov-
erage by adding random tests to a test suite. Specifically,
we make the following contributions in this study:

1. We report on the effectiveness of using a GA compared
to an algorithm based on random search for the purpose of
generating test suites with high branch coverage for object-
oriented programs.

2. We investigate the influence of certain types of
branches within the classes under test on the performance
of each technique.

3. Finally, in order to better understand the effect of the
search budget on the performance of each technique, we
study the techniques’ effectiveness at each time step dur-
ing the search process.

To allow for a fair comparison, we use the GA and a com-
mon version of random test generation implemented in the
same tool – EvoSuite, which generates branch covering test
suites for Java classes. We run experiments on a random
sample of 1,000 classes from the SF110 corpus of open source
projects [11] and evaluate both techniques in terms of the
achieved code coverage. Our results suggest that, in prac-
tice, there is little difference between the use of the GA and
random search. While the two approaches have different per-
formance profiles over time, the main reason for this finding
is actually because of the types of branches that are preva-
lent in object-oriented programs. Fitness-guided searches
like GAs work well when trying to cover branches that re-
sult in a smooth gradient of fitness values, which the search
can “follow” to the required test case. These branches are
typically characterized by numerical comparisons. However,
our study found that in practice such“gradient branches”are
relatively few in number; allowing random search to gener-
ate test cases without much relative disadvantage, and with
a similar level of effectiveness.

1367

http://dx.doi.org/10.1145/2739480.2754696

2. SEARCH-BASED TEST GENERATION
In this paper, we study the application of both random

and GA search to automatic test suite generation, as imple-
mented in the EvoSuite tool. EvoSuite aims to generate
unit test suites that cover as many branches of a Java class
as possible, while also executing all methods that are devoid
of branches, referred to as “branchless” methods.

2.1 Random Search for Tests
One strategy for finding branch-covering test cases is sim-

ply to generate sequences of statements to the class under
test at random, coupled with randomly-generated inputs.
If a randomly-generated test case covers new branches that
have not been executed before, it is added to a test suite for
the class, else it can be discarded. One disadvantage of this
approach is the size of the resulting test suite, which can be
very large and therefore carry a high execution cost.

A further problem is finding inputs that need to be certain
“magic” values required to execute certain branches, such as
constant values, specific strings etc. that are unlikely to
be generated fortuitously. One way of circumventing this
problem is to enhance the algorithm through seeding.

2.1.1 Seeding
The process of seeding involves biasing the search pro-

cess towards certain input values that are likely to improve
the chances of executing more coverage goals [1,8,19]. Evo-
Suite obtains seeds both statically and dynamically (as doc-
umented by Fraser and Arcuri [8]). The static approach
takes place before test generation: EvoSuite collects all lit-
eral primitive and string values that appear in the bytecode
of the class of the test. Then, while tests are being gen-
erated, literals that are encountered at runtime may also
be dynamically added to the pool of seeds. Some of these
seeds are specially computed, according to a set of predefined
rules. For instance, if the test case includes the statement
“foo.startsWith(bar)”, involving the strings foo and bar,
the concatenation bar + foo will be added to the seed pool.
During the search process, EvoSuite will then choose to
use a seed from the pool instead of generating a fresh value,
according to some probability.

We study random search with and without seeding en-
abled in this paper. We refer to the enhanced version of
random search incorporating seeding as Random+, and the
basic implementation without seeding as Pure Random.

2.2 Genetic Algorithm Search for Test Suites
While random search relies on encountering solutions by

chance, guided searches aim to find solutions more directly
by using a problem-specific“fitness function”. A fitness func-
tion scores better potential solutions to the problem with
better fitness values. A good fitness function will provide
a gradient of fitness values so that the search can follow a
“path” to increasingly better solutions that are increasingly
fit for purpose. With a good fitness function, guided search-
based approaches are capable of finding suitable solutions in
extremely large or infinite search spaces (such as the space
of possible test cases for a class as considered in this paper).

Genetic Algorithms (GAs) are one example of a directed
search technique that uses simulated natural evolution as a
search strategy. GAs evolve solutions to a problem based on
their fitness. GAs evolve several candidate solutions at once
in a “population”. The initial population of candidate solu-

tions is generated randomly. Each iteration of the algorithm
seeks to adapt these solutions to ones with an increased fit-
ness: “Crossover” works to splice two solutions to form new
“offspring” while “mutation” randomly changes a component
of a solution. The new solutions generated are taken forward
to the next iteration depending on their fitness.

With EvoSuite’s GA, a “solution” is a whole test suite,
consisting of a series of test cases [10]. Whenever a new
test case is generated at random (as with the construction
of the initial population), it is done so as described in the
last section, with seeding enabled. Crossover involves re-
combining test cases across two test suites while mutation
works at two levels: at test case level and the test suite
level. At the test case level, the mutation operator either
randomly adds new statements, removes existing ones, or
modifies them and their parameters. At the test suite level,
it adds a fresh, randomly-generated test case to an existing
test suite.

To guide the search towards achieving a high coverage test
suite, the fitness value can be calculated based on the num-
ber of covered goals. However, a fitness function based solely
on the number of covered goals provides no guidance to goals
that remain uncovered. As with previous works in search-
based test generation [18], EvoSuite incorporates branch
distance metrics, which indicate how “far” a branch is from
being executed. For example, if a conditional“if (a == b)”
is to be executed as true, the“raw”distance can be computed
as “|a− b|”. In this way, the closer the values of a and b are
to one another, the lower the branch distance is, and the
closer the search is to covering the goal.

Since EvoSuite aims to evolve test suites where each test
case covers as many branches as possible, the fitness function
involves adding the distance value d(b, T) for each branch b
within a test suite T , computed as follows [10]:

d(b, T) =

0 if the branch has been covered,

ν(dmin(b, T)) if the predicate has been
executed at least twice,

1 otherwise.

where dmin(b, T) is the minimum raw distance value for the
b for T , and ν is a function that normalizes a distance value
between 0 and 1. Since the test suite must cover both the
true and false outcomes of each individual branch, a distance
value is not computed until the conditional is executed twice
by the test suite. This is so that the initial execution of the
predicate, with some specific true/false evaluation, is not
lost in the process of pursuing the alternative outcome.

As longer test suites require more memory and execution
time, controlling the length of the test suite can improve
search performance [9]. Therefore, when deciding which test
suites should proceed into the population for the next iter-
ation of the search, EvoSuite prefers shorter test suites to
test suites with the same fitness but whose test cases of com-
posed of cumulatively higher number of statements.

Java programs are compiled to bytecode in order to be ex-
ecuted by the Java Virtual Machine (JVM), and it is at the
level of the bytecode at which EvoSuite works – branch
distances are computed by instrumenting and monitoring
bytecode instructions. Different types of bytecode instruc-
tion can therefore give rise to different types of fitness land-
scape that may or may not be useful in guiding the search,
as we discuss in the next section.

1368

(a) Int-Int Branch (b) Int-Zero Branch (c) Ref-Ref Branch (d) Ref-Null Branch

void m(int a) {
if (a == 1) {
// uncovered branch

}
}

void m(int a) {
boolean x = false;
if (a == 1) x = true;
if (x) {

// uncovered branch
}

}

void m(int a) {
Object x = null;
if (a == 1) x = this;
if (this == x) {

// uncovered branch
}

}

void m(int a) {
Object x = null;
if (a != 1) x = new Object();
if (x == null) {

// uncovered branch
}

}

(a-i) Source code (b-i) Source code (c-i) Source code (d-i) Source code

void m(int);
0: iload_1
1: iconst_1
2: if_icmpne 7

[uncovered branch]
7: return

void m(int);
0: iconst_0
1: istore_2
...
9: iload_2
10: ifeq 15

[uncovered branch]
15: return

void m(int);
0: aconst_null
1: astore_2
...
9: aload_0
10: aload_2
11: if_acmpne 16

[uncovered branch]
16: return

void m(int);
0: aconst_null
1: astore_2
...
15: aload_2
16: ifnonnull 21

[uncovered branch]
21: return

(a-ii) Bytecode (b-ii) Bytecode (c-ii) Bytecode (d-ii) Bytecode

0

1

2

3

4

5

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

0

1

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

0

1

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

0

1

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

(a-iii) Raw branch distance (b-iii) Raw branch distance (c-iii) Raw branch distance (d-iii) Raw branch distance

Figure 1: Examples of different branch types (denoted “uncovered branch”) and their effect on the respective fitness landscape
for the GA through raw (unnormalized) branch distance values. We show both the original Java source and the compiled
bytecode, as processed by EvoSuite. Note that the target true/false evaluation of the branches is inverted by the Java
compiler. The first column gives an example of a “gradient” branch, providing true guidance to the search. Conversely, the
remaining examples do not provide good guidance, with the majority of inputs to the method resulting in the same distance
value, and consequently a fitness landscape that is flat other than for the value required to execute the branch of concern.

3. BRANCH TYPES IN JAVA BYTECODE
Given that the fitness function is one of the key differ-

ences between the GA and random search, and that a ma-
jor component of the fitness function is the calculation of
distances for the branches in the class under test, we now
classify the types of branches that occur in the bytecode of
Java programs, and discuss the level of guidance they can
potentially afford the GA search in EvoSuite.

This is important because it has been long known that
not all branch predicates give “good” guidance, the archety-
pal example being that involving the boolean flag [3, 14].
Boolean conditions in branch predicates can only ever eval-
uate to true or false, offering one of only two distance val-
ues. Since one of these values corresponds to execution of
the branch, no guidance is given to the search. Nevertheless,
several branch predicates do indeed provide guidance, and
result in a smooth “gradient” in the fitness landscape that a
guided search can use to easily find test inputs.

3.1 “Integer-Integer” Branches
“Integer-Integer” branches involve the comparison of two

integer values. The range of values possible for this compar-
ison can potentially create a gradient for the search. Fig-
ure 1a shows an example of such a comparison, in which a
method receives an integer parameter “a”, and has a con-
ditional statement on the parameter (“a == 1”) (part a-i of
the figure). The bytecode (part a-ii) shows this is compiled
to a “if_icmpne” instruction, which compares the last two
integers pushed to the stack, performing a jump to some
other instruction in the bytecode if those two integers are
not equal. Part a-iii of the figure shows how the distance

value decreases as the chosen input value gets closer to the
value that would execute the uncovered branch.

Of course, “Integer-Integer” branches may not always re-
sult in a gradient: it depends on the underlying program.
One example of this is where two boolean values are com-
pared, since boolean values are represented as the integer
values 0 and 1 in Java bytecode. Therefore, source code
comparisons involving two boolean values are compiled to an
integer comparison involving the usage of the if_icmpne in-
struction. However, and as already discussed, boolean con-
ditions do not induce any useful landscape gradient.

Furthermore, EvoSuite’s special handling of switch

statements falls into the “Integer-Integer” category. Java
switch statements are compiled to either a tableswitch or
lookupswitch bytecode instruction. These instructions pop
the top of the stack to look up a “jump” target instruction
in a map data structure, for which the keys are the val-
ues originally used in each case of the switch. For ease
of fitness computation, EvoSuite simply instruments the
bytecode by adding an explicit if_icmpeq for each case be-
fore the original tableswitch or lookupswitch instruction,
comparing the top of the stack to each case value.

3.2 “Integer-Zero” Branches
“Integer-Zero” branches involve the comparison of an in-

teger value with zero. One type of “Integer-Zero” branch
occurs when boolean predicates are evaluated1, for exam-
ple as shown by Figure 1b. Here the branch involves the
evaluation of the boolean value x (part b-i of the figure).

1Note that boolean predicate evaluations in branches differ
in bytecode from comparing two boolean values – the latter
type of branch falls into the “Integer-Integer” category.

1369

void m(double a) {
if (a == 1.0) {
// uncovered branch

}
}

(i) Source code

void m(double);
0: dload_1
1: dconst_1
2: dcmpl
3: ifne 10
[uncovered branch]
10: return

(ii) Bytecode

0.0e+00

5.0e+08

1.0e+09

1.5e+09

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)
(iii) Raw branch distance

Figure 2: An example of handling a double comparison,
showing the source code (i) and the bytecode (ii). Although
these branches fall into the “Int-Zero” category, EvoSuite
instruments the bytecode so that distances are recovered,
resulting in a gradient landscape (iii).

The corresponding bytecode evaluates x, pushing the result
(an integer, 0 or 1) to the stack. The ifeq bytecode in-
struction then pops this value, performing a jump if it is
zero. Such a condition can only be either true or false, and
as such can only have one of two distance values, which, as
shown by Figure 1b-iii, are not useful to guiding the GA to
covering the branch. The “right” input must therefore be
discovered purely by chance.

A further type of “Integer-Zero” branch occurs as result
of comparisons involving values of float, double and long

primitive Java types. Figure 2 shows an example of a dou-
ble comparison. The original source (part i of the figure)
performs the comparison in the branch predicate. This is
decomposed into a sequence of bytecode instructions shown
by part ii of the figure. The comparison is performed by the
dcmpl in relation to the top two double values pushed to the
stack. The dcmpl instruction pushes an integer to the stack:
-1 if the first value is greater than the second, 1 if the first
is less than the second, else 0 if they are equal. The ifne

then performs a jump if the top of the stack is not 0.
Since the original numerical comparison in the source code

is transformed to a boolean comparison in the bytecode, a
significant amount of useful distance information is “lost” in
the compilation process that would have been useful in guid-
ing the search. EvoSuite therefore instruments the byte-
code so that distance information can be recovered. The
branch distance plot for the example, shown by Figure 2,
therefore restores a gradient that can be used to optimize
input values towards execution of the uncovered branch.

3.3 “Reference-Reference” branches
“Reference-Reference” branches are where two object ref-

erences are compared for equality. Since references are not
ordinal types, no meaningful distance metric can be applied,
and the situation is similar to boolean flags – either the ref-
erences are the same or they are not. Figure 1c shows an
example of this. The original source code conditional is “if
(this == x)” (part c-i of the figure), which Java compiles
to the bytecode instructions 9–11 in part c-ii of the figure.
Instructions 9 and 10 push the references onto the stack.
Instruction 11 is the branching point in the bytecode, with
“if_acmpne” popping the top two stack references and per-
forming a jump if they are not equal. The resulting plot
of branch distances (part c-iii) shows the resulting plateau,
providing no guidance to the required input that makes the
references equal and executes the uncovered branch.

3.4 “Reference-Null” branches
“Reference-Null” branches are similar to “Reference-

Reference” branches, except one side of the comparison is
null. Again, no meaningful distance metric can be applied.
Figure 1d shows an example. The source code compares x

with null. In the bytecode, x is pushed onto the stack by
instruction 15. Instruction 16 is the branching point, where
the ifnonnull instruction performing the jump if the ele-
ment popped off the top of the stack is not null.

3.5 Summary
We have summarized and classified the different types of

branches that can occur in Java bytecode. Some of these
instructions will potentially give rise to a “gradient” in the
fitness landscape, while others will not. We now study the
prevalence of these types of branches in real-world code,
whether they potentially involve a gradient, and their po-
tential impact on the relative performance of random search
and fitness-guided GA search.

4. EXPERIMENTAL SETUP
We designed an empirical study to test the relative effec-

tiveness of test case generation using random and GA search,
with the aim of answering the following research questions:

RQ1: Is the use of GA search more effective at generating
unit tests than random search?

RQ2: How do the results of the comparison depend on the
types of branches found in the code under test?

RQ3: How do the results of the comparison depend on the
time allowed for the search?

To answer the research questions, we performed experi-
ments on an initial sample of classes from SourceForge.

4.1 Subjects
In order to compare and contrast the relative effective-

ness and performance of random and GA search, we selected
a sample of classes from the SF110 corpus of open source
projects [11]. The SF110 corpus is made up of 110 open
source projects from the SourceForge open source repository
(http://sourceforge.net), where 10 of the projects were the
most popular by download at the time at which the corpus
was constructed (June 2014) and the remaining 100 projects
selected at random. Due to the large variation in the number
of classes available in each project, we stratified our random
sampling over the 110 projects, such that our sample in-
volved at least one class from each of the 110 projects in
the corpus, and comprised 1000 classes in total. However,
22 classes were removed from the sample for reasons such as
not having any testable methods (e.g., they consisted purely
of enumerated types, or did not have any public methods)
or test suites could not be generated for some other reason
that would allow us to sensibly compare the techniques (e.g.,
the class contained a bug or other issue that meant it could
not be loaded independently without causing an exception).

The final number of classes in the study therefore totaled
978, comprising small classes with just a single coverage goal
to larger classes with over 1,000 coverage goals, as shown
by Table 1. In this table, Branchless Methods indicates the
number of methods without conditional statements that can
be covered by simply calling the method concerned.

1370

http://sourceforge.net

Table 1: Statistics for the sample of 978 classes.

Min Avg Max SD

Total Branches 0 26.91 1,020 79.2
Branchless Methods 0 7.2 155 11.4
Total Goals 1 34.1 1,030 84.0

4.2 Collation of Branch Type Statistics
So that we could answer RQ2, we collated a series of statis-

tics on the types of branches in the bytecode of each class.
Firstly, we simply collected the numbers of branches that

fall into each of the categories detailed in Section 3 (i.e.,
“Integer-Integer” etc.) by simply analyzing the bytecode of
each class in turn.

Secondly, we attempted to classify each branch as either
potentially having a gradient distance landscape (“Gradient
Branches”’), or, a plateau landscape (“Plateau Branches”).
We programmed EvoSuite so that during test suite gener-
ation it would monitor the distance value of the predicate
leading to the branch. If in any of the searches in the ex-
periments, a value other than 0 or 1 is observed, we assume
a wider range of distance values is available for fitness com-
putation and label the branch as a “Gradient Branch”. Oth-
erwise the search is labelled as a “Plateau Branch”. Clearly,
this analysis is only indicative (but helps in understanding
our results, as we will show in the answer to RQ2). This is
because a range of values does not necessarily imply a gra-
dient that will be useful for guiding the search. Nor does
only finding the distances 0 and 1 for a branch mean that
there are not further distance values that could be encoun-
tered. For instance, given a branch predicate x > 5, if for
the whole duration of the search only the values x ∈ {4, 5, 6}
are used, then this will result in the distance values of 1, 0,
and 1 respectively; and the branch will be incorrectly clas-
sified as a plateau branch. However, it is quite unlikely that
the branch would only be attempted with these values over
the course of several searches.

4.3 Experimental Procedure
We applied EvoSuite to conduct our experiments, with

implementations of the GA, Random+ and Pure Random as
described in Section 2. We used Pure Random in RQ1 only,
in order to analyze for possible effects with Random+ due
to its seeding mechanism.

For RQ1 we applied each technique with a search time of
two minutes (which has been shown to be a suitable stop-
ping condition in previous work [11]). To answer RQ2, we
investigated the influence of the type of conditional predi-
cates on the outcome of each technique. To do so, we used
the statistics on branch types, collected as we described in
the last section. To better understand the influence of the
search budget over the outcome of the techniques for RQ3,
we executed EvoSuite using the GA and Random+ config-
urations with an increased search time of ten minutes and
measured the level of coverage at one minute intervals.

We conducted the University of Sheffield’s HPC Cluster
(http://www.shef.ac.uk/wrgrid/iceberg). Each node has a
Sandy-bridge Intel Xeon processor with 3GB real and 6GB
virtual memory. We used EvoSuite’s default configuration
and ran it under Oracle’s JDK 7u55.

4.4 Threats to Validity
Threats to the internal validity of our study include its

usage of only one test generation tool (EvoSuite). While

122

233

60

61

612

560

103

68

81

56

GA vs Random+

GA vs Pure Rand.

1824 743 102 75 GA Sig. Higher GA Higher Equivalent GA Lower GA Sig. Lower

Figure 3: Comparing GA performance with Pure Random
and Random+ over the 978 SourceForge classes.
(“GA Sig. Higher” is the number of classes for which GA obtained
significantly higher coverage than Random+ over the 50 runs of the
experiment; “GA Higher” – the number of class where a higher aver-
age coverage was obtained (but not significantly); “Equivalent”, the
number of classes where the average coverage level was the same, etc.)

this was deliberate to facilitate a more controlled, fair com-
parison, it is plausible that specific implementation choices
made in EvoSuite may limit the extent to which our re-
sults generalize (an associated external threat). The size of
the test suites, for example, may influence the comparison;
whereas Random+ has no constraint in the test suite size,
the GA evolves test suites with limited size (100 test cases
by default) which imposes boundaries in the search space.

Another threat to internal validity stems from the branch-
classification analysis described in Section 4.2, which can
miscategorize branches in certain cases. While we acknowl-
edge the results of this analysis may only be approximate,
however during testing the analysis categorized all branches
correctly. Furthermore, chance can affect the results of ran-
domized search algorithms. To mitigate this threat, we re-
peated all experiments 50 times.

Threats to external validity affect the generalization of our
results. While we used a randomly selected sample of Java
classes as subjects, our results may not generalize beyond
the SourceForge project repository or to other programming
languages/paradigms. Furthermore, we also used branch
coverage as a proxy measure of the quality of the resulting
test suites: results may vary for other test suite properties
(e.g., size, length or fault detection ability).

5. RESULTS
RQ1: Coverage Effectiveness. On average, GA at-

tains 67.84% branch coverage, Random+ achieves 67.94%,
while Pure Random obtains 65.22%. Figure 3 summarizes
the number of classes for which GA achieved a significantly
higher or lower level of coverage than Pure Random and
Random+ over the 50 repetitions of the experiments. We
computed significance using the Mann-Whitney U test at a
level of α = 0.05. While there are 122 classes for which the
GA achieves significantly higher coverage, there are also 81
classes on which Random+ attains significantly higher cover-
age than GA. Figure 4a plots the p-values for the significant
cases for the GA and Random+ comparison showing that
the majority of cases are highly significant (particularly in
the GA case) and thus unlikely to represent type-I errors.

We observe further similarities in the coverage achieved by
GA and Random+ with Figure 4b, which shows effect sizes
computed with Vargha-Delaney’s Â12 statistic [26]. Here,
the effect size estimates the probability that a run of GA
achieves higher coverage than Random+. A value of Â12 =
0.5 indicates that both search strategies perform equally,
Â12 = 1 indicates that all runs of GA will achieve higher
coverage than Random+, and vice versa for Â12 = 0. The
overall average effect size amounts to 0.51, which indicates
that GA is only very marginally more effective.

1371

http://www.shef.ac.uk/wrgrid/iceberg

0.00

0.01

0.02

0.03

0.04

0.05

GA Random+
Technique with significance

p−
va

lu
e

0.00

0.25

0.50

0.75

1.00

GA vs Random+

E
ffe

ct
 S

iz
e

(a) Box Plot (b) Violin Plot

Figure 4: Comparing GA performance with Random+.
(a) Box plot of p-values for classes where a significantly
higher level of coverage was achieved with either the GA
or Random+. (b) Violin plot of the effect sizes obtained
using Vargha-Delaney’s Â12 statistic, here computing the
proportion of the 50 repetitions for which the GA scores
a higher level of coverage than Random+ for each class;
thereby reflecting its relative effectiveness.

For 612 classes GA and Random+ achieve identical cov-
erage. To a large extent, this can likely be attributed to
the simplicity of these classes: GA achieves 100% coverage
on 456 classes, and Random+ on 440 classes. Classes with
lower but identical coverage are possibly due to problems
that EvoSuite cannot overcome regardless of search algo-
rithm (e.g., due to environmental factors such as classes de-
pending on databases or web services that were not available
during the experiments).

The comparison between GA and Pure Random shows
larger differences, with 233 classes where GA achieves sig-
nificantly higher coverage. This indicates that optimizations
such as constant and dynamic seeding which are used in
Random+ are effective and help covering non-trivial classes.

RQ1. Our experiments showed no significant differ-
ence between GA and Random+ in 78% of the classes,
and only slightly more classes with increase for GA
over Random+ than classes with a decrease.

RQ2: Influence of Branch Types. Although the com-
parison between GA and Random+ showed 612 classes with
no difference in coverage, there were also 203 classes with
significant differences. RQ2 aims to shed light on this by
studying the influence of different types of branches in a
class on the effectiveness of the search algorithms.

Figure 5a shows the distribution of different branch types
as taken from the bytecode of the classes. In total, there are
11,677 branches in the 987 classes. “Reference-Reference”
branches are rare: this is not surprising as in most cases in
Java a comparison is performed using the equals method on
the objects, rather than comparing references. “Reference-
Null” comparisons are more common accounting for approx-
imately one quarter of the branches. Almost half of the
branches (5, 741) are “Integer-Zero” branches, from which
only 303 involve double, float or long comparisons. Only
these 303 branches, along with the 3, 346 “Integer-Integer”
branches have the potential to provide gradients.

4644 5741 354 2236

 Integer−Integer Integer−Zero Reference−Reference Reference−Null

(a) Numbers of Branches Classified by Bytecode Branch Type

5156

4581

3603

3979

GA

Random+

 Covered Gradient Branches Covered Plateau Branches

(b) Numbers of Branches Classified as “Gradient” or “Plateau”

Figure 5: Numbers of different branch types in the classes
under test.

Effectiveness on Gradient Branches. Intuitively, one would
expect that the GA should achieve higher coverage on gra-
dient branches, as the branch distance values will influence
the search operators and guide the search towards covering
additional branches. Figure 6a compares GA and Random+
in terms of the coverage achieved when only considering
gradient branches; that is, the coverage is only calculated
for classes that have at least one gradient branch, and the
coverage values exclude non-gradient branches. There are
105 classes where GA achieves significantly higher coverage
of the gradient branches, with only eight classes where the
coverage is significantly lower. Figure 5b shows that overall
the GA covered 5,156 gradient branches, whereas Random+
covered only 4,581. This confirms that the GA benefits from
the branch distances provided by the gradient branches.

The eight cases where Random+ has significantly higher
coverage can be explained by their large number of branches
(69 total goals and 18 gradient branches on average): The
fitness function that guides the GA considers all branches
at the same time; this means that a test suite that is close
to covering many gradient branches may have a better fit-
ness value than a test suite that fully covers fewer branches.
In these cases, the GA would simply require more time to
eventually fully cover all these branches.

Effectiveness on Plateau Branches. Figure 6b compares GA
and Random+ when only considering the coverage of plateau
branches. There are 158 classes in which the GA has signifi-
cantly lower coverage compared to Random+, and 70 classes
with significantly higher coverage. Figure 5b shows that
overall the GA covered 3,603 plateau branches, whereas Ran-
dom+ covered 3,979; that is, even though the GA covered
more branches overall, it covered fewer plateau branches.
Since the branch distance for these branches only has two
values there is no guidance that the GA could exploit – a
plateau branch is either covered or it is not covered. The
lower coverage of the GA can be attributed to a loss of diver-
sity: Over time, the GA in EvoSuite prefers smaller test
suites and gets rid of random “noise”, focusing the search
operators on the exploitation of achieved coverage and mu-
tating existing objects. On the other hand, Random+ is not
biased by the search and continuously creates independent
new objects and call sequences.

Effectiveness on Branchless Methods. Branchless methods
represent a special case similar to plateau branches, and in-
tuitively they are simple to cover – they just require test
cases to call the method. Figure 6c compares GA and Ran-
dom+ with respect to the coverage of methods. Although
GA achieves significantly higher cover than Random+ in 18
cases, there are 75 classes where the GA results in lower
coverage, which is similar in proportions to the plateau

1372

105 58 160 31 8

(a) “Gradient” Branches Only

70 43 340 77 158

(b) “Plateau” Branches Only

18 24 743 102 75

(c) Branchless Methods

1824 743 102 75 GA Sig. Higher GA Higher Equivalent GA Lower GA Sig. Lower

Figure 6: Comparing GA performance with Random+ for
different types of branch and with branchless methods.
(“GA Sig. Higher” is the number of classes for which GA obtained
significantly higher coverage than Random+ over the 50 runs of the
experiment; “GA Higher” – the number of class where a higher aver-
age coverage was obtained (but not significantly); “Equivalent”, the
number of classes where the average coverage level was the same, etc.)

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Coverage Timeline (minutes)

C
ov

er
ag

e
(%

)

Technique:

GA

Random+

Figure 7: Branch coverage comparison between GA vs.
Random+ over 10 minutes with one minute intervals. Dots
represent mean averages.

branches. It is maybe surprising that there can be difference
in so simple coverage goals in the first place. Our conjecture
is that this is because Random+ has a higher probability
of inserting new method calls: The GA only mutates a test
suite with a certain probability, and then each test in turn
is only mutated with a certain probability, and finally in-
sertion of new statements again does not always happen.
In contrast, Random+ generates tests by repeatedly adding
new statements. Again it would only be a matter of time for
the GA to fully cover all branchless methods, although pos-
sibly more time than for Random+. Interestingly, classes
on which the GA achieved more than 90% coverage have
a median proportion of 100% branchless methods out of all
coverage goals, providing further evidence that many classes
in practice are trivial.

RQ2. Our experiments show that GA achieves higher
coverage of gradient branches compared to Random+,
but lower coverage of plateau branches, which consti-
tute the majority of branches.

RQ3: Effect of the Time Allowed For the Search.
The results so far have shown that GA and Random+ per-
form similarly for the majority of classes after two minutes
of search, with some differences in performance on plateau
and gradient branches. This raises the question whether the
results are influenced by the allocated search budget – given
more time, do the results change?

To analyze the impact of the search budget, we repeated
the experiments with GA and Random+ using a search bud-
get of 10 minutes, and measured the coverage values at one

127 36 699 52 41

Figure 8: Branch coverage comparison between GA and
Random+ using a search budget of 10 minutes. (Legend
is as for Figure 6.)

minute intervals. Figure 7 compares the average coverage
per class for each interval: There is a slight increase of cov-
erage for both GA and Random+ over time, and after 10
minutes GA achieves an overall average of 70% branch cov-
erage, while Random+ achieves 68.3%.

Given more time, GA will catch up on branchless meth-
ods and plateau branches covered compared to Random+.
Figure 8 compares GA with Random+ after 10 minutes, and
shows that the GA has significantly lower coverage on only
41 classes after 10 minutes, compared to 81 after two min-
utes (Note that the number of classes with coverage data
after 10 minutes is only 955, as there were 32 additional
classes for which EvoSuite did not produce any data after
10 minutes). The GA will also continue to optimize gradient
branches; however, the dynamic seeding used in EvoSuite
will also help Random+ in many cases to cover gradient
branches. Figure 8 shows that there are 127 classes where
GA has higher coverage after 10 minutes, compared to 122
after two minutes. For 699 classes the coverage is identi-
cal, which is likely because the maximum achievable level of
coverage has been reached by both algorithms.

RQ3. Our experiments show a slightly higher
increase of coverage over time for GA compared to
Random+, but equivalent coverage in the majority of
cases.

6. DISCUSSION
Our results indicate that, while the techniques have a sim-

ilar outcome for the majority of classes, there are differences
that influence the effectiveness. However, the fact that Ran-
dom+ can outperform the GA in a number of subjects raises
the question of why this happens in practice. In this section
we look at some of the factors in the search algorithms that
may be the cause of these surprising results.

Although GA and Random+ were applied with the same
time limit in our experiments, Random+ executed 1.3 times
as many statements as the GA in the same time. This can
be attributed to the search operators of the GA, and the re-
sulting frequent copy operations on test cases and cached ex-
ecution traces as implemented in EvoSuite. Without such
an overhead, Random+ can spend more time executing tests
and exploring the search landscape. Nevertheless, as shown
in Figure 7 even increasing the GA’s budget by 30% to match
the number of executed statements can only result in small
improvements, and does not affect the overall findings.

The analysis of RQ2 also suggests that the search opera-
tors of the GA have an effect on the diversity: The GA has
a lower probability of generating new tests, and may thus be
slower at covering plateau branches or branchless methods
(cf. Figure 6, part b and c).

A further influencing factor is that a test suite produced
by the GA may not cover all branches that were covered
throughout the search. This is because the fitness function
aims to maximize coverage: For instance, given a test suite
T1 that covers goals {A,B}, and another test suite T2 that

1373

covers goals {B,C,D}, assuming T2 has a better fitness
value it will be selected as the best solution. As a result,
although goal A was covered by T1, it remains uncovered in
the resulting test suite. In contrast, Random+ generates a
new test case on each iteration, and if the new test covers
any new goals, it is added to the test suite. This suggests
that creating an archive of solutions that cover new coverage
goals would be important for the GA.

The large number of plateau branches could potentially
be reduced by introducing testability transformation [15]; al-
though EvoSuite implements certain transformations (e.g.,
on floating point numbers or string comparisons) it does not
apply a transformation of boolean flags.

7. RELATED WORK
There have been several papers that have compared GAs

with random search in the procedural domain (e.g. [16],
[27]). This work has found guided search to always outper-
form random. In general, procedural code tends to consist
of larger functions than methods in OO code, and each func-
tion tends to involve more parameters. While random search
typically covers a large percentage of the branches involved,
the GA covers significantly more.

Sharma et al. [24] showed on 13 examples that random
testing of OO container classes achieves the same coverage
as shape abstraction, a systematic technique specific for con-
tainer classes. The results of our experiments suggest that in
practice, many OO classes are, similarly to container classes,
simple in nature and thus well suited for random testing.

Earlier experiments with EvoSuite on the SF100 cor-
pus [11] showed that a large number of classes are either
trivially covered, or uncoverable without providing the test
generator with additional features (e.g. to handle environ-
mental inputs such as web services or databases). This find-
ing is in line with our results; however, a comparison with
Randoop [21] in the same study suggested a large improve-
ment of GA over random testing. The results of our exper-
iments suggest that this improvement is largely due to the
engineering of the tool rather than the search algorithm; for
example, Randoop does not use seeding.

Eler et al. [6] analyzed the SF100 corpus from the point
of view of test data generation using dynamic symbolic ex-
ecution. They also reported the large number of reference
comparisons and the challenges of handling those in a con-
straint solver. They further reported the relatively low num-
ber of branches involving integer comparisons, which result
in constraints that DSE is typically strong at handling.

8. CONCLUSIONS
In this paper, we presented an empirical study compar-

ing the effectiveness of a GA and a random search-based
algorithm for generating branch coverage test suites for real-
world Java classes. One might expect the GA to be more
suitable than random search for this task, but surprisingly
we observed that both algorithms behaved similarly on the
majority of classes, in particular when applying optimisa-
tions such as seeding. Although a GA can exploit the guid-
ance provided by certain types of branches, in practice there
are many more branches that provide no such guidance, and
on some classes with many such branches the GA resulted
in lower coverage than random search – even when a large
search budget was used.

There certainly is some room for improving the GA for the
task, as for example suggested by different optimisations not
included in our experiments [12,13,17]. However, if the ob-
jective is to quickly achieve a decent level of branch coverage
on object-oriented classes, then using random search with
seeding may be sufficient.

Acknowledgments. This work is supported by the
EPSRC project “EXOGEN” (EP/K030353/1). The authors
would like to thank Chris Wright for help with R.

9. REFERENCES
[1] Alshahwan, N., Harman, M.: Automated web application testing

using search based software engineering. In: ASE. IEEE (2011)

[2] Andrews, J.H., Li, F.C., Menzies, T.: Nighthawk: A two-level
genetic-random unit test data generator. In: ASE. ACM (2007)

[3] Baresel, A., Sthamer, H.: Evolutionary testing of flag conditions.
In: GECCO. Springer (2003)

[4] Baresi, L., Lanzi, P.L., Miraz, M.: Testful: an evolutionary test
approach for Java. In: ICST. IEEE (2010)

[5] Csallner, C., Smaragdakis, Y.: JCrasher: an automatic
robustness tester for Java. Softw. Pract. Exper. 34(11) (2004)

[6] Eler, M., Endo, A., Durelli, V.: Quantifying the characteristics
of Java programs that may influence symbolic execution from a
test data generation perspective. In: COMPSAC. IEEE (2014)

[7] Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation
for object-oriented software. In: FSE. ACM (2011)

[8] Fraser, G., Arcuri, A.: The seed is strong: Seeding strategies in
search-based software testing. In: ICST. IEEE (2012)

[9] Fraser, G., Arcuri, A.: Handling test length bloat. Softw. Test.,
Verif. Reliab. 23(7) (2013)

[10] Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans.
on Software Engineering 39(2) (2013)

[11] Fraser, G., Arcuri, A.: A large-scale evaluation of automated
unit test generation using EvoSuite. ACM TOSEM 24(2) (2014)

[12] Fraser, G., Arcuri, A., McMinn, P.: A memetic algorithm for
whole test suite generation. J. Syst. Software 103(0) (2014)

[13] Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based
test suite generation with dynamic symbolic execution. In:
ISSRE. IEEE (2013)

[14] Harman, M., Hu, L., Hierons, R., Baresel, A., Sthamer, H.:
Improving evolutionary testing by flag removal. In: GECCO.
MK Pub. (2002)

[15] Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H.,
Baresel, A., Roper, M.: Testability transformation. IEEE Trans.
on Software Engineering 30(1) (2004)

[16] Harman, M., McMinn, P.: A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE
Trans. on Software Engineering 36(2) (2010)

[17] Li, Y., Fraser, G.: Bytecode testability transformation. In:
SSBSE, pp. 237–251. Springer (2011)

[18] McMinn, P.: Search-based software test data generation: a
survey. Softw. Test., Verif. Reliab. 14(2) (2004)

[19] McMinn, P., Shahbaz, M., Stevenson, M.: Search-based test
input generation for string data types using the results of web
queries. In: ICST. IEEE (2012)

[20] Oriol, M., Tassis, S.: Testing .NET code with YETI. In:
ICECCS. IEEE (2010)

[21] Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random
testing for Java. In: OOPSLA. ACM (2007)

[22] Prasetya, I.W.B.: T3, a combinator-based random testing tool
for Java: benchmarking. In: FITTEST’13. Springer (2014)

[23] Sakti, A., Pesant, G., Gueheneuc, Y.G.: Instance generator and
problem representation to improve object oriented code
coverage. IEEE Trans. on Software Engineering 41(3) (2015)

[24] Sharma, R., Gligoric, M., Arcuri, A., Fraser, G., Marinov, D.:
Testing container classes: Random or systematic? In: FASE.
Springer (2011)

[25] Tonella, P.: Evolutionary testing of classes. ACM SIGSOFT
Softw. Eng. Notes 29(4) (2004)

[26] Vargha, A., Delaney, H.D.: A critique and improvement of the
“CL” Common Language Effect Size Statistics of McGraw and
Wong. Educational and Behavioral Statistics 25(2) (2000)

[27] Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test
environment for automatic structural testing. Information and
Software Technology 43(14) (2001)

1374

	Introduction
	Search-based Test Generation
	Random Search for Tests
	Seeding

	Genetic Algorithm Search for Test Suites

	Branch Types In Java Bytecode
	``Integer-Integer'' Branches
	``Integer-Zero'' Branches
	``Reference-Reference'' branches
	``Reference-Null'' branches
	Summary

	Experimental Setup
	Subjects
	Collation of Branch Type Statistics
	Experimental Procedure
	Threats to Validity

	Results
	Discussion
	Related Work
	Conclusions
	References

